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CHAPTER I

INTRODUCT ION

Maintainability CM), as an engineering discipline, is

progressing through its infancy and is now gathering sophistication

and momentum. This growth can be seen in the increasing number of

published articles introducing new methods, new applications of old

methods, and new concepts slanted toward the field of maintainability.

This paper can be placed in the second category. It is an old

concept, applied in a different way to obtain the desired results.

The desired result in this case is the analysis of downtime

data by fitting a distribution to the data. The old method is the

familiar gamma distribution which has, in recent years, been the

subject of lively conversations as a possible distribution of

downtimes. It has been pointed out by many authors, Peterson (14)*,

in particular, that the gamma distribution can assume a variety of

different shapes. This is verified by Figure 1. In particular, noteý

tOat when the shape parameter is equal to 1, the distribution is a'i

exponential. Although the shape parameter is not restricted to an

integer value, an Erlang distribution (1) results when it is. As

the Erlang distribution has been used in queueinr theory, ime

further attributcs of the gamma distribution may he fol" there.

Peterson (14), in his paper, discusses the Fittir ; of a gamman

distribution to (,mptrica l data generated by a computer. Although

he discusses the attributes of the gamma distribution in the analysis

"Numbers in pa'rentheses reler to the material listed in the
Relerences at thc. tnd of this pa•epr.
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of downtime to quite an extent, his method of parameter estimation

leaves much to be desired statistically. This method consisted of

plotting the empirical data and then "overlaying" this plot with

plots of the gamma distribution with integer shape parameters. The

gamma distribution which fi4tted best by this overlaying process was

then used to solve for tt. scale parameter. The threshold parameter

was assumed to be zero in all cases. Although the results were

biased by this method, he does give an actual application of the

gamma distribution fitted to downtime data.

The gamma distribution is attractive for two main reasons.

The first is that the log-normal distribution, which is usually

assumed to be the distribution of downtimes, is quite unwieldy and

requires plotting on log-normal paper to ascertain tlhat the data is

actually log-normally distributed. The second reason is that many of

tI tools and methods being brought into use today .;ometimes require

the manipulation of distributions in complex ways. For example,

Pieruschka (15) develops the force of ..ortality of equipment with

ideal repair and shows that a steady state value is obtained as the

number of failures increase. Hle uses Laplace transforms to obtain

the convolution of a gamma distribution with integer shape parameters

and then integrates the rv4iilting distribution to find the mean.

These are the reasons wli, it is desirable to prove that the eamma

distribution will represent the anticipated data, and still be

mathematically simple.

Two downtime distributions can he spoken of in equipment analysis.

The first is th( distribution of elapsed time required to complete
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a specific maintenance task. The second concerns the distribution

of times required to complete different tasks within a given system,

and this distribution is said to deseribe the system downtime. The

random variable in the second c.,se is, of course, composed of elements

of both Lases, but the randomness of the individual task times is

usually neglected. This time element approach to the analysis of

downtimes will not be used here; but, instead, we will only be

interested in fitting a function to a number of data points.

The function to be fitted is the gamma distribution and para-

meter estimation is by maximum likelihood where certain terms of the

maximum likelihood equations have been tabulated. These tables are

entered with a parameter formed by the ratio of the arithmetic mean

to the logrithmic mean and the shape parameter term is read out.

Several more s~mple calculations will yield the threshold parameter

and the scale parameter.

In obtaining probability levels, the gamma distribution has one

of the disadvantages of the icg-normnI di~tribution in that tables

must be coniulted (8,19. All of the moments of the gaxmma distribu-

titcr are tunctions of , r ýarwnneters, ir. possiblv most

impertant, a ganri. disti.i:,tion ccnvA-~J with itself, results in

another ganma distribLtio'n.

To prove that the gamma distribution coild be fitted to downtime

cata, a computer program was written to perform the estimation pro-

S....'••-l ,' %Fccified density functions

ganmma distribution. When

testud n> the Kulmogoru\--.,,,:'ruoff go riness of fit test (11), there
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was no significant difference between any of the sets of data and its

corresponding gamma distribution approximation at the .05 level.

A brief literature survey will be given in Chapter II, with the

ensuing chapter devoted to the development and use of the gamma

distribution and the estimation procedure. The convolution of the

gamma distribution as pertains to downtime data is developed, and

several examples will be given in Chapter IV. Some possible extensions

of and conclusions to the paper will then be discussed in Chapter V.
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CHAPTER II

LITERATURE REVIEW

Much of the impetus for this paper resulted from Peterson's

paper (14) which was a rough approximation of downtime data by the

gamma distribution. Initially, work was started on the so-called

generalized gamma distribution developed by Stacy (16) of the IBM

Corporation and at times worked on by Stacy and Mihram (17), Harter

(7), Harter and Moore (6), Parr and Webster (12), and Collins (3).

The fourth parameter is a power of the exponential term in the three

parameter gamma distribution. Although Stacy and Mihram and Collins

have developed t•jo different parameter estimation procedures, the

methods are unwieldy and time consuming. The convolution of the

generalized gamma distribution is given as a summation term. In

attempting to fit the four parameter gamma distribution to data, it

was soon realized that the ad.:antage of a wider variety of possible

shapes was nct wcorth the. .c'ddtic:,a1 complexity.

Alt'iough thu methllod ,f moments in parameter estimation for tht!

gammfa Wz" - _:1 • • i .c.1tcr confidence obtained

by maxt, ,"•, '-• I -, . Soveral tables for

=.,lving the maximum likelijhoou ,.quations are available. Among these

ire Chapman (2), Masuvama and Kuraiwa (1951), and Greenwood and

[t;rand (5), the l',;t being us;ed in this paper. General discussions

S. ... f i',' contain,.d in most statistics and relia-

. . ,,. d,:v' !.', the gamma distribution

. , .- ni.t in r Lii• ry anal- s I , and develops the
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mortality and hazard rates of the distribution. Probability tables

for the Incomplete Gamma Fur.ction have been computed by Pearson (13)

and Harter (8). Some of these discussions are presented in the next

chapter in a general discussion of the gamma distribution.
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CHAPTER III

THE GAMMA DISTRIBUTION

In this chapter, the gamma distribution will be investigated.

The moments and the moment generating function along with the

convolution of the ,amma distribution will be given and the method

of parameter estimation will be developed.

The gamma density function is given by

b-1 ~ t-c

tc= a a t
f t) a f(b)

S0 otherwise

where c is the threshold vailuc,

a is the scale paiaTeter,

b is the shape parcnh. r, and

:(n) is the garmna functior with argument n (Table 2).

The c ,irmzulative cistribution is

l' (,) " V t'r (t t, ) = i (ut)

wher I Tu ' is the in I'-.ptt (3,ama F,inction Ratio and in Harter's

notation :

p = b-

W . t 0  - ,

.,, h ;--i

IllAmiidm



mortality and hazard rates of the distribution. Probability tables

for the Incomplete Gamma Function have been computed by Pearson (13)

and Harter (8). Some of these discussions are preser ed in the next

chapter in a general discussion of the gamma distribution.
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j= a b + c

and

= a2b.

In general the kth moment about the threshold parameter is

u ak bk k-I
k (b) " ' (b + j).

j =0

A point that will be used later should be noted here, and that is

that a number of different combinations of scale parameter and shape

parameter will yield approximately the same distribution. This can

be seen from the equations for the mean and variance in which there

are three unknowns. An illustration oa this point is shown in

Figure 2 where the respective parameters of the curves are

Curve -r c a b Mean Variance

1 -. 2 .65 4.15 2.5 1.75

2 0 .707 2.5 1.76

3 .. .89 2.36 2.5 1.87

l'aramet,,r Estimation bv Maximum Likelihood

Tn the devw opment of the mnximum like lihood equations for

pa ram( tcr t-sLiT--!t ion (5), wt forn. th ie joint prob'b ilitv of drawing

n 4amplcs, t1, t2, t3*.... tn from a :irri.i distrihbition with parameters

c. a, and b.

) (t



10

14.

0n
V4

cc

r- enLn C0
in C1

U4



11

tn-C nl ti-c
b- (ti-c) b-i e i

(tn-c) e = i=1

ab F(b)) bnt-c\ ;(u)an [r(b)]n

Taking the logarithm yields

n n
ti-c

I-= lnL = (b-1) ln(t -c) - - - bn In a - n r(b).
1=1 i=l a

Differentiating with respect to the parameters to maximize the

probability of obtaining the given sample results in

a, n tic - 0
a i=l a a

ab = t Equation I
n

n
7, In (t - c) - n In a - n O.

'b i=l " b)

Substituting the value found for a in equation 1, one obtains
n

In b - (b) = in (ti-c) i= In (ti-c) Equation 2
: (b) n n

where 1 "(b) is the first derivative of the gamma function with respect

to b. Taking the partial with respect to the threshold pardweter gives

-- = - (b - 1) 1• + - = 0
"ti - c

n
a (b-I) - I = n. Equation 3

i=l ti - c

In equation I the product ab is seen to be the arithmetic mean
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corrected for the threshold value. In equation 2, f r, (b).) Cr (b)]

is the tabulated digamma function (4), and equation 2 may be solved

usirg a -et of these tables and natural logarithms. However, the

entire left-hand side of equatio. 2 has been tabulated in several

different ways (2,5).

This then will be the method used to estimate the parameters.

The right-hand side of equation 2 is simply the logarithm of the

arithmetic mean minus the logarithm of the geometric mean. If we

denote this right-hand side Ps Y and the left-hand side as n(b), then

ri(b) = Y.

Greenwood and Durand (5) have tabulated bn(b) = b[ln b - rF(b)/

F(b)1 versus n(b) = Y to eight decimal places and their table is

reproduced as Table 1.

The procedure will be to calculate the arithmetic and geometric

means of the data and set Y equal to the difference of the logarithms

of these two means. Enter Table 1 with this value and read bn(b) = Yb.

Then solve for b = Yb/Y.

The scale parameter n 3 found from equation I and is equal to

the arithmetic mean divizd' by b. Equation 3 indicates that some

iteration process must be used to solve for the threshold value.

Since this value must he found before the means can be calculated, a

anethod of estimation which is free Of Lerms containing a and b must

be found. The following estimate was developed by fitting a straight

i•e to '"he Ar•,• T',,rc-c p ci"t n the curve generated by the expected

inks n: the various ordr-rod -imple noint,. (Appendix 3 shows the

development of this equation). rhe resulting expression is
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c Y2 + Y1 (Y3 - Y1 ) (Y3 - Y2 )
2 2(2Y2  Y1 - Y3 )

where YI, Y2 , and Y3 are the first th-ee ordered sample points.

Perhaps the most valuable asset of the gamma distribution is the

ability to convolve one gamma distribution with another. The easiest

proof of this is to derive the moment generating function and then

find the distribution of the sum of random variables by multiplying

their respective moment generating functions together. For the gamma

distribution, the moment generating function is

E(etlt) f- e a e

aab ((b)
i- o t

( b-i ) h
a. e- dt

,a

no) (1b1 
a

Thus, a gamma distribution convolved witt itself will result in

a gamma distribution with threshold parameter 2c, scale parameter a, and

shape parameter 2b. In general, when n gamma distributions are con-

volved together, if they have a common scale parameter, a gamma distri-
n

butic:i rrsults Ath threshold parameter c=, scale parameter a,
n i~l

and shape parameter h: . The restriction of equal scale para-
1=1

meters for the distributions being convolved will not be too great of

an impairment in the treatment of downtimes since each set of data

will have approximately the same range. Recalling that a set of data
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can be represented by a variety of scale and shape parameter combina-

tions, it !s seen that sets of data with unequal scale parameters can

be convolved by preassigning a common scale parameter to each. The

shape parameter for each set of data would then be found by dividing

týP individual arithmetic means by the common scale parameter. This

concept will be discussed in the following chapter in the form of an

example.

'1



15

CHAPTER IV

EXAMPLES

The first example in this chapter shows thie steps necessary to

fit a gamma distribution to a set of data. T1,e second example will

illustrate the method of convolving several sets of data with unequal

scale parameters.

1. The iollowing times were taken in a maintenance test on a

particular system. We wish to perform an analysis on the data and

fit a distribution to it so that we may speak of the probability of

completing a future action or actions within a certain time.

1.7 4.6 2.3 3.0

4.0 3.4 1.3 3.7

3.3 2.9 3.8 2.2

2.6 2.0 2.7 4.3

3.5 2.5 3.1

The first step in the ana]ysis is to find the first three ordered

points. They are Y1 = 1.3, Y9 = 1.7, Y3 = 2.0, then

C = 1.7 + 1.? _ (z.0 - 1.3) (2.0 - 1.7)
2 2 L( 2 ) (1.7) - 1.3- 2.01

= 1.5 - -21 = 1.5 - 1.05 =.45.2

The irithmetic mean is found to be

-- " ti - c 48.35
x -- 2.542.

n 79



the geometric mean is

n

antilnIn ( _ = antiln 16.444 2.372,
n 19

then Y = In i
12.372 / 09

Entering Table 1 we find that for

Y = .0694, Yb = .113.

Then

b =-5113 = 7.37,
.0694

a = - 2.54 - .345,

b 7.37 t - .45

.6.37 4
and f(x) = (t - .45) e

.58

Entering the incomplete gamma function tables of Harter, where

p = b - I = 6.37 ý 6.5

and
t - c _ t - .45

u-a- .935

we can ascertain the cumulative probability for any given time and

plot the graph of Figure 3. Also plotted on the graph is the curve

from which the original data points were drawn, which in this case

was a normal distribution with a mean of 3.0 and variance of 1.0.

Performing the Kolmogorov-Smirnoff goodness of fit test (11)

I-X ,"A l:( t'GANA - F(t)NORMAL .06 , .301

where .301 is the critical valao.
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Therefore there is no significant difference at the .05 level of

signi ficance.

2. A second example will demonstrate the convolution of a number of

sets of data. The data is as follows:

System 1:

3.13 1.96 3.84 2.33

2.48 3.00 1.36 3.38

4.64 4.04 2.62 1.72

2.87 2.16 3.67 4.28

3.52 3.25 2.75

System 2:

4.57 4.04 5.76 6.87

5.59 3.81 4.71 5.43

3.54 5.00 5.29 4.24

6.19 6.46 3.13 5.96

4.85 5.15 4.41

System 3:

3.11 1.42 1.67 2.22

2.45 2.11 .58 .89

1.89 1.78 2.58 2.90

3.42 2.73 2.00 1.55

1.27 2.33 1.10

System 4:

7.61 5.16 4.39 5.52

5.35 6.00 7.50 6.48

4.50 7.06 6.16 5.68

6.65 5.84 8.07 6.32

S84
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Fitting the gamma distribution to the four systems as in the first

example, the various parameters are found to be,

System c a b Mean Variance

1 .94 .46 4.5 3.0 .95

2 2.68 .54 4.3 5.0 1.26

3 2.03 .34 11.7 6.0 1.35

4 .19 .39 4.7 2.0 .715

4

i~l A.
Setting A I = .43,

4

the bi's are then

bl _ -j = 4.80,SA

b2 _ = `2 _= 5.45,

A

b3 = -3 = 9.24, and3 A

b4 = ̀ 4 = 4.21.
A

Then the distribution of Ltic convolveu systcms is a gamma distribution
4

with threshold parameter C = ci = 5.84, scale parameter A = .43,

and shape parameter B = P bi = 23.7. This distribution has been
1=l

plotted in Figure 14 along with the convolution of the four daca

generating distributions which were all normal with means of 3, 5, 6 and

2 and variances of 1, 1.3, 1.6 and 7.5.

Note in particular the parameters of the total distribution



20

Method Mean Variance t 9 5 % t99%

Convolved 16 4.4 19.74 21.59
Gamma

Convolved 16 4.65 19.56 21.03
Normal

The Kolmogorov-Smirnoff goodness of fit was again applied with

4 x 19 = 76 degrees of freedom. No significant difference could be

found at the .0) level.
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CHAPTER V

CONCLUSIONS

Although the gamma distribution approximations found by the

author fitted extremely well, it is recommended that someone using

the method go slowly and check the initial results before proceeding.

This method will have important ramifications in the design of new

systems since the designer will know beforehand that the downtimes will

follow a ganma distribution of some sort. He can, therefore, feel free

to use the models necessary for proper design of a logistical system

without making a poorly based assumption as to the distribution of the

downtimes. Also, with the many time critical repair action situations

that occur in the space industry, a planning engineer can use the

accurate probability models without employing an inaccurate repair

time d" stribution,

The convolution tec niqiau developed for uncqual scale parameters

needs more validation than the single example presented. However, the

potential of such a technique demands that it he investigated further.

For those who wculd still argue the validity of the log-normal

distribution in maintainability work, Fiure 4 has been providcd. It

is a gamma distribution fittcd to a log-normal distribution with a

mean ei .7() and variance of .604.

In the estimation procedure, a and b were fixed by the data as

soon as the threshold par1ameter was found, and varying c will vary

..he fit. The equation for c on page 13 is certainly not the best

estimate. A possible alternative would be to plot the first few
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sample points versus their expected, or median, ranks and approximating

the threshold parameter by eye. This would certainly lend self-assurance

to the estimate.

Although the process can be hand operated, computer programs have

been written for both the data fitting process, and for the convolution

technique and are presented with the expected output in Appendices I

and 2.

Greenwood and Durand (5) have also developed the formulas for the

variances of a and b. Since we violated one of their original premiseb

by estimating c from the data, these formulas will not be presented

in order to avoid temptation of the reader.

Further areas of research in the line of using the gamma distribu-

tion for representing repair times would be to improve the estimate of the

threshold parameter in order to obtain a better fit. Perhaps this should

be developed for a better fit in the upper half or perhaps only the upper

tail. The convolution technique has assumed equal weight for all of the

systems, this could most certainly not be the case. Further research

could be done on weighting the different sets of data by their frequency

with respect to the overall system. Interesting possibilities also lie

in the previous research done on the Erlang distribution (1) which is a

special case of the gamma distribution. Perhaps some of the theories

which have been developed in queueing theory about the Erlang distribu-

tion would be useful in maintenance queueing analysis.

It is hoped by the author that further research on the gamma distri-

bution will be done and that the gamma distribution will be used more

frequently in downtime analvsis. Since the ganmma distribution is quite
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simple in form, especially when the shape parameter is an integer, it

is easy to become familiar with the distribution and gain an insight

into the data it represents. It is hoped that this paper will help

make the garma distribution an available tool of the Maintainability

engineer.
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APPENDIX 1

Computer Program for Fitting a Gamma
Distribution to a Set of Data

This appendix contains the flowchart, the program, and the

expected output of a program which fits a gamma distribution to n

data points. In addition, the input formats are given on standard

forms. The process is as in the main portion of this paper with the

following exceptions.

1. In lieu of Table 1, the following equations (5) were used to

solve for b.

b = y-1(.5000876 + .1 6 4 8 8 52 y - .0544274y 2 )

For 0 < y - .5772

b = 8.898919 + 9 .059950y + .9775373y 2

y( 1 7 . 7 97 2 8 + 11. 9 6 8 4 7 7y + y2 )

For .5772 *- y ý- 17.0

2. The geometric mean was calculated by

1

t; = t n
i21
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FLOWCHART

Read the Number of Sample Points I

IRead the Sample Values

n 1 =1.01.

Find the Threshold Parameter c

DOI= 1, N

zFi = xi - cZ

~I

j- zi Zj) (zi)

N

01f
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Y In (W In (K-G)

Scale Parameter a x

Find i, (b)

DO T 1, N1

Find the Density Function
at Elach Sample Point

Write the Sample Number and
the Density at that Point
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0
Write the Values of the

Threshold, Scale and Shape Parameters
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DIMENSION X(I00) ,Z (100)
READ(5,1O) N
READ(5,20) (X(M), M=1,N)

C THERE ARE N SAMPLE roINTS X(1),X(2),...X(N)
SXBAR = 0.0
SXDOT = 1.0
AN = N

1 *xýr(1)-.2.*X(3))
C C IS THE THRESHOLD PARAMETER

DO 100 L = 1, N
Z(L) =X(L)-C

SXBAR -SXBAR + Z(L)
SXixxr =SXDcYr * Z(L)**(1.O/AN)

100 CONTINUE
XBAR = SXBAR/AN
Y = ALOG(XBAR/SXDOT)

C XBAR IS THE ARITHMETIC MEAN, SXDOTI THE GEOMETRIC MEAN
IF(Y-.5772) 1,1,2

1 B = (.5000876+.1648852*Y. .0544274*Y*Y)/Y
GO TO 3

2 B = (8.898919,+9.05995*Y+.9775373*Y*Y)/(Y*(17.79728
1 + 11.968477 * Y + Y*y))

C B IS THE SHAPE PARAMETER
3 A = XARIB

C A IS THE SCALE PARAMETER
C VALUE OF THE DENSITY FUNCTION AT EACH SAMPLE POINT.
C THE NEXT SIXTEEN CARDS ARE OPTIONAL AND WRITE T17r,
C THE FIRST SEVEN CARDS FIND GAMMA B)

WRITE(6,30)
30 FORMAT(1H1,14X,'SAMPLE',SX,'SAMPLE.',13X,'DENSITY'/

1 14X,'NtIMBI:R',9X,'POINT'//)
AMUL 1.0
BG= B

7 TF(BG -2.0) 4,4,5
5 BG = BC - 1.0

AMUL =AMI, * BG
GO TO 7

4 Q =BC-l1.0
GAMB=ANUtL*(1.-. 57710166*Q+.98585399*Q**2.-.87642128*Q
1 **3.+.83282112*Q**4.-.5684729*Q-.*5.+25482049*Q**6.-
2 .O514 993*Q,-',"7.)
DO 200 K = 1,N
FX = ((Z(K) /A)**(B-1.)*EXP((-1. )*Z(K) IA)) /(A*GAMB)
WRITE(6,40) K, X(K), FX

40 FORMAT(I15X,13,1OX,F6.2,5X,F16.7)
200 C ONT TN1;TT

WRITE(6,50) C, A, B
10 FORMAT(13)
20 FORMAT(12F:6.2)
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50 FORMAT(lHO,'THE DATA IS GAMMA DISTRIBUTED WITH ,

1'THRESHOLD PARAMETER = ',F7.4//40X,'SCALE PARAMETER
2 ,F8.4//36X, 'AND SHAPE PARAMETER = ',F8.4)

STOP
END
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CHAPTER III

THE GAMA DISTRIBUTION

In this chapter, the gamma distribution will be investigated.

The moments and the moment generating function along with the

convolution of the gamma distribution will be given and the method

of parameter estimation will be developed.

The gamma density function is given by

(t - cb e t-c

f(t) a C < t < "
a F(b)

t0 otherwise

where c is the thresbold value,

a is the scale parameter,

b is the shape parct1nt-r, and

:(n) is the gamnma function with argument n (Table 2).

The cuwnmulaLive distribuLion is

F(te r (t t t ) I (u,p)

where I ,u.t is the Inc:".potte anrina Finctron Ratio and in Harter's

notation

p -tb- 1

::'. t o - C

;i, b--I
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o..

CC

I-I

F-4

F-4

© -4

, NIBMBER OF SAMPL.• POINTS, N, FORMAT (13) 0 1 9

I ,F sAMPLE POINTS
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APPENDIX 2

Computer Program for Convolving

Several Sets of Data

This program utilizes the previous program in a do loop to fit

gamma distributions to several sets of data. The average scale para-

meter is found and each set of data is forced to have this common

scale parameLuC. The distributions are convolved with the threshold

k k
parameter being E ci, scale parameter = Z ai and shape parameter =

i-I i=l
k

k
Z bi whure there are k sets of data.
1~

S . . ... ... : .. . • i i - id a • i , H ~ a a i ll l i t 1
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FLOWCHART

Read the Number of Subsystems, K

Zci=O7

7 aai

Z bi=O

NO! DO I, K

-Read the Number of Sample
Points in the Subsystem

I 1

S Read the Sample_ Values I
for Elie Subsystem

Ci C, + C.!

0D0
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0° 0

Xi= X

E. a1

aavg K-

DOI 1, K

b1 = •L..._.

aavg

x b= + b

I
Threshold, Scale and Shaý,e Parameters
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DIMENSION X(100)
READ(5,10) K

C THERE ARE K SUB-SYSTEMS BEING ANALYZED
SUMC = 0.0
SUMA = 0.0
SUMB = 0.0

C THE DO 800 LOOP FITS A GAMMA DISTRIBUTION TO EACH SET
C OF DATA.

DO 800 I = 1,K
READ(5,10) N
READ(5,20) (X(M), M=1,N)

C THERE ARE N SAMPLE POINTS X(1),X(2),...X(N)
SXBAR = 0.0
SXDOT - 1.0
AN= N
C=(X (2)+X (I))/2.0- (X (3)-X (1))*)X (3)-X(2)) /(4.*X (2)

1 - 2.*X(1) - 2.*X(3))
C C IS THE THRESHOLD PARAMETER

DO 100 L = 1, N
Z(L) = X(L)-C
SXBAR SXBAR + Z(L)
SXDOT = SXDOT * Z(L)**(I.O/AN)

100 'ONTINUE
XBAF = SXBAR/AN
XB(I) = XBAR
Y = ALO;(XBAR/SXDOT)

C XBAR IS THE ARITIHMETIC MEAN, SXDOT THE GEOMETRIC MEAN

IF(Y-.5772) 1,1,2
1 B = (.5000876+.1648852*Y-.O544274*Y*Y)/Y

GO TO 3
2 B = (8.898919+9.05995*Y+.9775373*Y*Y)/(Y*(17.79728

1 + 11.968477 * Y + Y*'Y))
C B IS T1HE SHAPE PARAMETER

3 A = XBAR/B
C A IS THE SCAU17 PARAMETER

SUMA = S1MNA + A
SUMC = SIMC + (c

C THIS WTRITE STATEMENT IS OPTIONAL AND PRINTS THE
C PARANETERS OF EACH SUB-SYSTEM.

WRITE(6,30) 1, C, A, B
30 FORMAT(1110, 'SUB-SYSTEM',I3,'I1AS BEEN FITTED WITh A',

V' (NMA I)TSTRiBT7TON AND'//' C ='F8.4,' , A ='F8.4,
2' AND 1 1:8.13

800 CONTINUE
AK = K
AAVC = Sgl-'A/AK
DO 900 1, = 1,K
SHTMB = SUMB + XB(L)/AAVG

900 CONTINUE
WRITE(6,40) K, SIUMC, AAVG, SUMB

10 FOP%¶AT (13)
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20 FORMAT(12F6.2)40 FORMAT(IHO,13,' SUBSYSTEMS HAVE BEEN FITTED WITH GAMMA'1,' DISTRIBUTIONS AND THEIR CONVOLUTION IS'//' A GAMMA'2,' DISTRIBUTION WITH C ',F8.4,' A =',F8.4,' AND B ='
3F8.4)

STOP
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APPENDIX 3

Derivation of the Equation

for the Threshold Parameter

As indicated in Chapter III, the maximum likelihood equation for

the threshold parameter requires an iteration process. As this para-

meter is rarely known in maintainability analysis, some estimate of

this parameter must be made from the data available. Since the area

between adjacent ordered sample points is known from order statistics

to be __L (10), a straight line can be fitted to the unknown curve
n+l

and the threshold parameter estimated.

f(t) S
r

S,

I

I .__I n+ 1
_____--n-1 n+j1.l

I 1 . Y3
A i

II /1 1 1-II I I l ll ll I I~l l • ... IC
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The area between the first and second sample points is

I f s(y 2  - yl)

and the area between the second and third points is

I =r(y 3 - Y2).
n+1

The slope of the line is then

slope = 2(r- s)

Y3 - Yl

and at the point S

s = A + slope Y2 + YI
2

A = s - slope Y2 + Yl Equation 4
2

At the point c

0 = A + slope (c)

A = - slope (c). Equation 5

Equating equation 4 to equation 5

s slope Y2 + Y = s lope (c)
2

and

C=Y2 + Yl I
C-=

2 slope

v2 + Y - (Y3 - Y2) (Y? - Y1)

2 ~(2Y2 - "' - Y3)



49

LIST OF REFERENCES

1. Brockmeyer, E., Halstrom, H. L. and Jensen, A., The Life and Works
of A. K. Erlang, Trans. Danish Acad. Sci., 1948.

2. Chapman, D. G., "Estimating the Parameters of' a Truncated Gamma
Distribution", Ann. Math. Stat., Vol. 27, No. 2, June 1956.

3. Collies. C. A., thesis for a Master's of Science majoring in
Statistics, Texas A&M University, 1966 (unpublished).

4. Davis, H. T., Tables of Higher Mathematical Functions, Vol. 1,
Principia Press, 1933.

5. Greenwood, J. A. and Durand, D., "Aids for Fitting the Gamma
Distribution by Maximum Likelihood", Technometrics, Vol. 2, No. 1,
February 1960.

6. Harter, H. L. and Moore, A. H., "Maximum Likelihood Estimation of
the Parameters of Ganmia and Weibull Populations from Complete and
from Censored Samples", Technometrics, Vol. 7, No. 4, November 1965.

7. Harter, H. L., "Maximum-Likelihood Estimation of the Parameters of
a Four Parameter Generalized Gamma Distribution from Complete and
Censored Samples", Technometrics, Vol. 9, No. 1, February 1967.

8. Harter, H. L., Tables of the Incomplete Gamma Function Ratio and of
Percentage Points of the Chi-Square and Beta Distributions, U. S.
Government Printing Office, Wash~ington, D. C., 1965, Price-$2.50.

9. Hogg, R. V. and Craig, A. T., Introduction to Matehmatical Statistics,
Macmillan Company, New York, New York, 1959.

10. Johnson, N. L. and Leone, F. C., Statistics and Experimental Design
in Engineering and the Physical Scienc~es, Vol. 1, John Wiley and
Sons, Inc., New York, New York, l96-'.

11. Ostle, B., Statistics in Research, Iowa State University Press,
Ames, Iowa, 1963.

12. Farr, V. B., and Webster, J. T., "A Method for Discriminating
Between Failure Density Functions Used in Reliability Predictions",
Technometrics, Vol. 7, No. 1, February 1965.

13. Pearson, K,, Tables of the Incomplete U.-'mma Function, Cambridge
Universitv Press, 193s.

14. Petterson. F. L._ "Maintainabilitv Risk Analysin Using the Analytical
NM;intenance Model", 1967.



50

15. Pieruschka, E., Principals of Reliability, Prentice-Hall, Englewood
Cliffs, New Jersey, 1963.

16. Stacy, E. W., "A Generalization of the Gamma Distribution", Ann.
Math. Stat., Vol. 33, No. 3, September 1962.

17. Stacy, E. W. and Mihram, G. A., "Parameter Estimation for a Gen-
eralized Gamnma Distribution", Technometrics, Vol. 7, No. 3, August
1965.



8

CHAPTER III

THE GAMMA DISTRIBUTION

In this chapter, the gamma distribution will be investigated.

The moments and the moment generating function along with the

convolution of the gamma distribution will be given and the method

of parameter estimation will be developed.

The gamma density function is given by

Se , a
f(t) = ( - < t < e

I a 17(b)

0 otherwise

where c is the threshold value,

a is the scale parameter,

b is the shape paranuLtr. and

-(n) is the gamma function with argument n (Table 2).

The cu:mnulative distribution is

F(te) Pr (t < tO) = I (u,p)

where I tu,p) is the Inc:,rnplL-te Gamma F,.nct-on Ratio and in Harter's

notation (

pt=b-

'.•:•',to - C

i1 -- I

. , ---To


